Career Essentials in Generative AI by Microsoft and LinkedIn

Discover the skills needed to apply generative AI in your career. Learn the core concepts of artificial intelligence and generative AI functionality. Develop an understanding of generative AI models. Learn the ethical considerations of using generative AI. Explore the impact of generative AI tools.

Introduction to Generative AI Studio

This course introduces Generative AI Studio, a product on Vertex AI, that helps you prototype and customize generative AI models so you can use their capabilities in your applications. In this course, you learn what Generative AI Studio is, its features and options, and how to use it by walking through demos of the product. […]

Create Image Captioning Models

This course teaches you how to create an image captioning model by using deep learning. You learn about the different components of an image captioning model, such as the encoder and decoder, and how to train and evaluate your model. By the end of this course, you will be able to create your own image […]

Transformer Models and BERT Model

This course introduces you to the Transformer architecture and the Bidirectional Encoder Representations from Transformers (BERT) model. You learn about the main components of the Transformer architecture, such as the self-attention mechanism, and how it is used to build the BERT model. You also learn about the different tasks that BERT can be used for, […]

Attention Mechanism

This course will introduce you to the attention mechanism, a powerful technique that allows neural networks to focus on specific parts of an input sequence. You will learn how attention works, and how it can be used to improve the performance of a variety of machine learning tasks, including machine translation, text summarization, and question […]

Encoder-Decoder Architecture

This course gives you a synopsis of the encoder-decoder architecture, which is a powerful and prevalent machine learning architecture for sequence-to-sequence tasks such as machine translation, text summarization, and question answering. You learn about the main components of the encoder-decoder architecture and how to train and serve these models. In the corresponding lab walkthrough, you’ll […]

Introduction to Image Generation

This course introduces diffusion models, a family of machine learning models that recently showed promise in the image generation space. Diffusion models draw inspiration from physics, specifically thermodynamics. Within the last few years, diffusion models became popular in both research and industry. Diffusion models underpin many state-of-the-art image generation models and tools on Google Cloud. […]

Introduction to Responsible AI

This is an introductory-level microlearning course aimed at explaining what responsible AI is, why it’s important, and how Google implements responsible AI in their products. It also introduces Google’s 7 AI principles.

Introduction to Large Language Models

This is an introductory-level microlearning course that explores what large language models (LLM) are, the use cases where they can be utilized, and how you can use prompt tuning to enhance LLM performance. It also covers Google tools to help you develop your own Gen AI apps. This course is estimated to take approximately 45 […]

Contact Center AI: Conversational Design Fundamentals

Welcome to “CCAI Conversational Design Fundamentals”, the first course in the “Customer Experiences with Contact Center AI” series. In this course, learn how to design customer conversational solutions using Contact Center Artificial Intelligence (CCAI). You will be introduced to CCAI and its three pillars (Dialogflow, Agent Assist, and Insights), and the concepts behind conversational experiences […]